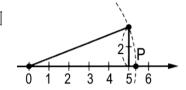
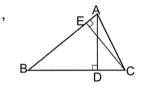
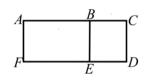

一、選擇題:

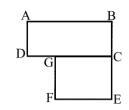

- ____1. 若A= $\sqrt{12}+\sqrt{7}$, $B=\sqrt{11}+\sqrt{8}$, $C=\sqrt{10}+3$,則 A、B、C 的大小關係為何? (A)A>B>C (B)B>C>A (C)C>B>A (D)A=B=C
- 2. 下列何者錯誤?


C)
$$5\sqrt{3} > 3\sqrt{5}$$
 (D) $\sqrt{8} - \sqrt{7} > \sqrt{6}$

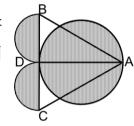
___3. 儒儒利用圓規和直尺在數線上描繪出 P 點的位置,如右圖。則圖 中的 P 點坐標為何?



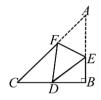
- ____4. 若 $\sqrt{2\frac{5}{8}}$ ÷()× $\sqrt{\frac{2}{15}} = \sqrt{\frac{3}{5}}$,則()=? (A) $\sqrt{\frac{525}{16}}$ (B) $\sqrt{\frac{189}{16}}$ (C) $\sqrt{\frac{7}{12}}$ (D) $\sqrt{\frac{12}{7}}$
- _5. 如右圖, $\triangle ABC$ 中, $\overline{AD} \perp \overline{BC}$ 於 D 點, $\overline{CE} \perp \overline{AB}$ 於 E 點。若 $\overline{AB} = \sqrt{30}$, $\overline{BC} = \sqrt{35}$, $\overline{AD} = 2\sqrt{3}$, $\mathbb{H} \overline{CE} = ?$ (A)3 (B)4 (C) $\sqrt{13}$ (D) $\sqrt{14}$ °



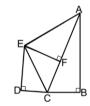
- _____6. 已知 $\frac{a}{b} = \sqrt{5} 2$,且 $ab \neq 0$,則 $\frac{a^2 b^2}{4ab} = ?$ (A)-2 (B)-1 (C)2 (D)1 °
- ___7. 長方形 ACDF 中,B、E 分別為 \overline{AC} 、 \overline{DF} 上的兩點, \overline{AB} =x, $\overline{BC} = \sqrt{31} - 4$,長方形 ABEF 與 BCDE 的面積分別為 $\sqrt{31} + 4$ 與 x, $\exists \exists x = ?$


- (A) $47 8\sqrt{31}$ (B) $47 + 8\sqrt{31}$ (C) 15 (D) $\sqrt{15}$ \circ
- _8. 已知四邊形 ABCD 中, $\angle B = \angle D = 90^\circ$, $\overline{AB} = 24$, $\overline{BC} = 7$, $\overline{AD} = 20$,則 \overline{CD} 之值為何? (A)8 (B)12 (C)15 (D)16 °
- _9. 已知 A(a)、B(b)是數線上相異兩點,它們在數線上的位置如右圖,則: $\sqrt{9a^2} + \sqrt{4b^2} - \sqrt{(a+b)^2} - \sqrt{(a+2)^2} - \sqrt{(b-6)^2} = ?$ (A) -5a-2b-8 (B) -5a-2b+8 (C) -5a+2b+8 (D) -5a+2b-8
- ____10. 若a 為使 $\sqrt{55-a}$ 為整數之最小正整數,b 為使 $\sqrt{33+b}$ 為整數之最小正整數,則 $\sqrt{a+b}$ 之值為何?
 - (A) ± 3 (B)3 (C)4 (D) ± 4 °

_____11. 如右圖,長方形 ABCD 放在長方形 CEFG 上,且 \overline{AB} = 12, \overline{BC} = 5, \overline{CE} = 6, \overline{CG} = 8。今長方形 ABCD 以 C 點為支撐點,順時針旋轉,則 \overline{AE} 最長之值為何?

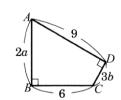

(A) $\sqrt{265}$ (B)17 (C)19 (D)21 \circ

- _____12. 已知 $x=\sqrt{11}+\sqrt{7}$, $y=\sqrt{11}-\sqrt{7}$,則 x^2-xy+y^2 之值為何? (A) $32-4\sqrt{77}$ (B) 32 (C) $4+4\sqrt{77}$ (D) $4\sqrt{77}$ 。
- ____13. 如右圖,等腰三角形 ABC 之腰長為 18, D 為底邊 BC 之中點,圖中著色部分為一個圓及兩個半圓,它們的直徑分別為 AD、BD、CD,請問著色面積為何?

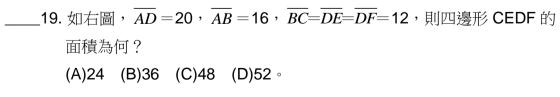


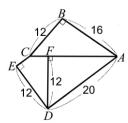
(A) 49π (B) 64π (C) 81π (D) 100π \circ

____14. 如右圖,在等腰直角 \triangle ABC 中, $\angle B=90^\circ$, $\overline{AB}=\overline{BC}=40$ 公分,將 \triangle AEF 沿 \overline{EF} 對摺,使 A 點落在 \overline{BC} 中點 D,則 \overline{BE} 為多少公分? (A)5 (B)10 (C)15 (D)20。

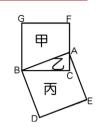

_____15. 如右圖, $\angle B = \angle D = 90^{\circ}$, $\overline{EF} \perp \overline{AC}$,且 A、C、F 三點在同一直線上。若 \overline{AB} = 12, $\overline{AF} = 8$, $\overline{AE} = 10$, $\overline{BC} = 5$, $\overline{DE} = 3\sqrt{5}$,則下列何者正確?
(A) $\overline{CF} = 6$ (B) $\overline{CE} = 3\sqrt{7}$ (C) $\overline{EF} = 8$ (D) $\overline{CD} = 4$ 。

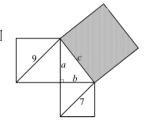
_____16. 化簡 $(\sqrt{3}+\sqrt{5}-\sqrt{15})^2(\sqrt{3}-\sqrt{5}+\sqrt{15})^2=?$


(A) $349+156\sqrt{6}$ (B) $349-156\sqrt{6}$ (C) $589+340\sqrt{3}$ (D) $589-340\sqrt{3}$


_____17. 如右圖, $\overline{AB} \perp \overline{BC} \cdot \overline{AD} \perp \overline{CD}$,且 $\overline{AB} = 2a \cdot \overline{BC} = 6 \cdot \overline{AD} = 9 \cdot \overline{CD} = 3b$, 則(2a-3b)(2a+3b) = ?

(A)15 (B)45 (C)54 (D)117 °


_____18. 解一元一次方程式 $\sqrt{7}x-\sqrt{5}=\sqrt{5}x+\sqrt{7}$,則x=? (A) $6+\sqrt{35}$ (B) $6-\sqrt{35}$ (C) $12+2\sqrt{35}$ (D) $12-2\sqrt{35}$ 。



- ____20. 在坐標平面上,O 為原點,直線 L 方程式為 4x—3y+12=0,則原點 O 到直線 L 的最短距離為多少?
 - (A)2 (B) $\frac{12}{5}$ (C) $\frac{13}{5}$ (D) $\frac{5}{2}$ °

- ____21. 如右圖, \triangle ABC 中, \angle ACB=90°,已知四邊形 ABDE 和 BCFG 均為正方形,且甲、乙、丙三區域的面積分別為 288、36、304,則 \overline{AC} =?
 - (A)3 (B)4 (C)5 (D)6 °

- ____22. 若 $\sqrt{2}+\sqrt{2}+\sqrt{2}=\sqrt{a}$, $\sqrt{80}-\sqrt{20}=\sqrt{b}$,則 $\sqrt{\frac{b}{a}}$ 之值為何?
 - (A) $\frac{\sqrt{10}}{3}$ (B) $\frac{3\sqrt{10}}{10}$ (C) $\frac{\sqrt{30}}{3}$ (D) $\frac{\sqrt{30}}{10}$ °
- ____23. 以直角三角形的三邊 $a \cdot b \cdot c$ 為邊長分別作一正方形,如右圖。已知其中兩個正方形之對角線長分別為 $7 \cdot 9$,則鋪色正方形的面積為何? (A)32 (B) $\frac{65}{2}$ (C)65 (D)130。

- ____24. 已知 m、n 為正整數,若 $(6\sqrt{3}-4)^2=m-\sqrt{3n^2}$,則 $\sqrt{m-n}=?$ (A) $6\sqrt{2}$ (B) $2\sqrt{19}$ (C) $4\sqrt{5}$ (D) $2\sqrt{21}$ 。
- ____25. 利用加減消去法解二元一次聯立方程式 $\begin{cases} (\sqrt{11} + \sqrt{7})x + (\sqrt{11} \sqrt{7})y = 7\sqrt{11} + 11\sqrt{7} \\ (\sqrt{11} \sqrt{7})x + (\sqrt{11} + \sqrt{7})y = 7\sqrt{11} 11\sqrt{7} \end{cases}$

得其解為何?

(A)
$$x = \frac{9}{2}$$
, $y = -1$ (B) $x = \sqrt{11}$, $y = \sqrt{7}$ (C) $x = -\sqrt{7}$, $y = -\sqrt{11}$ (D) $x = 9$, $y = -2$